

TimeScapes
Multi-scale analytics package for MD
trajectories

TimeScapes Version 1.5 / Document Version 0.6
May 2017

biomachina.org

Notice

The TimeScapes User’s Guide and the information it contains is offered
solely for educational purposes, as a service to users. It is subject to
change without notice, as is the described software. Biomachina.org as-
sumes no responsibility or liability regarding the correctness or complete-
ness of the information provided herein, nor for damages or loss suffered
as a result of actions taken in accordance with said information.
No part of this guide may be reproduced, displayed, transmitted, or other-
wise copied in any form without written authorization.
The software described in this guide is copyrighted and licensed by Bi-
omachina.org under separate agreement. This software may be used only
according to the terms and conditions of such agreement.

Copyright

© 2014-2017 Biomachina.org. All rights reserved.

Trademarks

All trademarks are the property of their respective owners.

1. Overview
We recommend to obtain copies of the papers [1,2,4] and any supporting
information as listed in appendix B. These documents are complementary
to the following instructions and are required for understanding the pro-
gram workflow.

TimeScapes consists of ten Python programs:

Seven original programs for event detection and activity monitoring
[1]:

• agility.py: performs a sliding window RMS fluctuation and seg-
mentation

• contact.py: extracts contact time series based on distance cutoff
• expanse.py: computes the alpha carbon RMS deviation
• gmdhist.py: computes Generalized Masked Delaunay (GMD) pair

distribution histograms
• gmdshow.py: computes data for rendering a 3D GMD graph,
• pearson.py: performs Pearson correlation analysis of raw time se-

ries data
• terrain.py: performs event detection and activity monitoring

Three newer programs for heat map [2] and allosteric network analy-

sis:
• tagging.py: performs a mapping of functionally important residues

based e.g. on the correlations of absolute differentials of pairwise
residue contact distances with an external activity function (such as
returned by agility.py or terrain.py) [2]

• turning.py: performs a mapping of functionally important residues
based on correlations of absolute differentials of backbone pivot
angles with an external activity function (such as returned by agili-
ty.py or terrain.py) [2]

• signals.py: performs an allosteric network analysis based on pair
contact correlations or a Cartesian covariance matrix [unpublished]

More details of the purpose, input, and output of each program are given
on the following pages. These ten programs are supported by five library
modules identified by the “mod” prefix. The programming style is mainly
procedural and modular, to facilitate future development. Due to the em-
phasis on code-reuse and use of Python-specific nesting the code is com-
pact and readable.

The name of the support modules corresponds to their functionality:

• mod_pio.py: PDB (atoms and bonds) input / output
• mod_pwk.py: utility routines for working with PDB structure files
• mod_tio.py: trajectory input / output
• mod_twk.py: utility routines for working with trajectory frame

files
• mod_gen.py: generic utility routines, i.e. routines that are not

structure or frame based

The ten programs are invoked and all required information is specified us-
ing the UNIX shell command line:

$ python program.py arg1 arg2 … argn

or
$ program.py arg1 arg2 … argn

If invoked without arguments, abridged documentation will be printed on
the standard output. This information can also be seen by scrolling down
to the __main__ function in the respective Python files.
For information on software required by TimeScapes and instructions on
building, testing, and installing the software, consult the file README.txt
in the distribution bundle. To report bugs or request help with using
TimeScapes, send a message to timescapes@biomachina.org.

mailto:timescapes@biomachina.org

2. Integration into the MD Workflow
Through the use of VMD molfile plugins [3], TimeScapes supports a vari-
ety of trajectory formats including DCD (CHARMM, NAMD, XPLOR),
DTR, DTRV (Desmond), LAMMPSTRJ (LAMMPS), NetCDF (Amber)
and TRJ, TRR, XTC (Gromacs). (Note: the Amber CRD format is not
supported, please use NetCDF instead.)
It is expected that the user has access to trajectory management software
such as VMD for such basic editing tasks as stride (time-step) modifica-
tion, least-squares alignment of trajectory frames, and unwrapping of co-
ordinates (in case of periodic boundaries). TimeScapes does not support
such trajectory editing.
When preparing trajectories with external software, we recommend re-
moving the solvent and keeping only the non-hydrogen (heavy) protein at-
oms to reduce disk space and read access time. In the case of periodic
boundaries, coordinates must be unwrapped prior to using TimeScapes
(there should be no atoms wrapped around the periodic box, please inspect
your trajectory if necessary). TimeScapes results have been tested to be
robust under different stride. Setting the stride with external software
mainly affects computational efficiency of the TimeScapes runs. As a rule
of thumb we recommend for testing purposes to stride the trajectories ini-
tially to a small number of frames (100-1000) and/or to select a subset of
the structure, before carrying out slower and more detailed analyses with
TimeScapes.
Finally, the user must prepare a corresponding PDB file from which
TimeScapes programs obtain atom masses and the coarse side chain model
(typically, one atom is representative for a full side chain, see [1]). The
PDB file should be carefully inspected for non-standard amino acid or at-
om names, especially at the N and C termini. Appendix C gives residue
and atom names, taken from the CHARMM, Amber, and GROMACS
force field parameter sets, that are recognized for representative side chain
atom selection.
A warning will be issued if the number of representative side chain atoms
in the coarse model does not match the number of alpha carbon atoms. If
this is the case, the easiest remedy is to edit the PDB file to conform to the
above residue and atom names. If desired, the template function
mod_pwk_side (in mod_pwk.py) can also be duplicated and edited to
create a specialized coarse model specific to your system. See the modi-
fied function mod_pwk_side_villin as an example. To facilitate such
modifications, the user may specify the name of a newly created coarse
graining function as an optional argument to certain TimeScapes programs
described in Section 3.
A macro file was provided with this user guide to facilitate rendering of
the coarse grained model mod_pwk_side with the VMD molecular

graphics program. After sourcing (from the VMD command menu)
representative_atoms_macro_source_me.vmd, the new selection
“representative” is available within VMD’s Graphical Representations
menu (under “Selections”, “Singlewords”) which selects the atoms of the
coarse-grained side-chain model (see appendix C).

3. User Guide (alphabetically by program name)

agility.py - sliding window RMS fluctuation and segmentation

Purpose
Performs an RMS fluctuation calculation in a Gaussian weighted sliding
window and performs a time-dependent segmentation of the RMS fluctua-
tion into “basins” and “transitions” for a temporal coarse-graining of the
trajectory.

Usage
$ agility.py infile1 infile2 delta outname [-full] [-lsq]

Input (4 or 5 arguments)
• infile1: PDB file for mass assignment. Used also in the optional

least-squares fit
• infile2: Trajectory file, for supported formats see Appendix C
• delta: Full Width at Half Maximum (FWHM) of Gaussian

weighting within the sliding window in trajectory timestep units
(FWHM = 2 sqrt(2 ln 2) sigma). This parameter is important as it
sets the desired time scale of analysis, and it is dependent on the
problem. If you have no specific idea you can start with e.g. 5% of
the total frame number and adjust up or down as desired

• outname: User-defined basename prefix for output file names
• [-full]: Optional full output incl. basin trajectory files (these can

be large, so they must be requested explicitly)
• [-lsq]: Optional least-squares fitting of trajectory frames to the

input PDB

Output
• outname_segmentation.dat: Raw data file with frame number,

RMS fluctuations, first derivative, basin label (for plotting purpos-
es or to provide an activity rate function for tagging.py and turn-
ing.py)

• outname_transitions.dcd: DCD trajectory file with frames of basin
transitions (if -full option is specified)

• outname_transitions.log: Corresponding log file with program pa-
rameters and frame information

• outname_minima.dcd: DCD trajectory file with frames of basin
minima (if -full option is specified)

• outname_minima.log: Corresponding log file with program param-
eters and frame information

Caveats and Notes
• Trajectory coordinates are taken at face value and must be un-

wrapped
• No atom selection mechanism is provided; mass-weighted fluctua-

tions are computed for all atoms in the system. Eliminate all the
atoms you don’t want included beforehand

• Least-squares fitting might be slow; pre-process trajectory and
leave -lsq off, if possible

• Log files contain detailed output information even when the corre-
sponding trajectories are not explicitly written (in default mode)

• If the program runs slowly or runs out of memory, try running with
fewer frames or eliminate unwanted atoms

contact.py - extracting contact time series based on distance
cutoff

Purpose
Facilitates plotting of distances between representative atoms in the coarse
model as a function of simulation timestep

Usage
$ contact.py infile1 infile2 cut outname [csel]

Input (4 or 5 arguments)
• infile1: PDB file used for coarse model assignment
• infile2: Trajectory file, for supported formats see Section 2
• cut: Selection distance cutoff (in Å) A particular contact is select-

ed if the separation of representative atoms falls to at or below the
cut level in any trajectory frame

• outname: User-defined basename prefix for output file names
• [csel]: Optional user-provided coarse-graining function defined

in mod_pwk.py (default: mod_pwk_side)

Output
• outname_raw.dat: Raw contact distance time series stored column-

wise
• outname_contacts.log: Representative atom details row-wise for

each contact; the contacts are ordered by residue number of the
second participating residue

Caveat and Note
• Trajectory coordinates are taken at face value and must be un-

wrapped

• Based on distance geometry so no alignment of frames is required

expanse.py - computing the alpha carbon RMS deviation

Purpose
Facilitates plotting of the alpha carbon (CA) RMSD from a PDB as a
function of simulation timestep

Usage
$ expanse.py infile1 infile2 outfile

Input (3 arguments)
• infile1: PDB file for CA assignment and for the least-squares fit
• infile2: Trajectory file, for supported formats see Section 2
• outfile: Name of output file for CA RMSD time series

Caveat
• Trajectory coordinates are taken at face value and must be un-

wrapped

gmdhist.py - computing GMD pair distribution histograms

Purpose
Facilitates plotting of pair distance distribution histograms for the evalua-
tion of GMD orders as shown in [1]

Usage
$ gmdhist.py infile1 infile2 nb cut m outname [csel [msel]]

Input (6, 7, or 8 arguments)
• infile1: PDB file used for coarse model assignment
• infile2: Trajectory file, for supported formats see Section 2
• nb: Number of histogram bins
• cut: Maximum distance in Å, e.g. 30
• m: Maximum GMD order > 1
• outname: User-defined basename prefix for output file names
• [csel]: Optional user-provided coarse-graining function defined

in mod_pwk.py (default: mod_pwk_side)
• [msel]: If 'csel' is defined, optional user-provided mask sampling

selection for GMD defined in mod_pwk.py (the default is
mod_pwk_all)

Output
• outname_hist1.dat: Full pair distribution of coarse model
• outname_hist2.dat: Order-2 GMD pair distribution
• outname_hist3.dat: Order-3 GMD pair distribution
• …
• outname_histm.dat: Order-m GMD pair distribution

Caveats and Notes
• Trajectory coordinates are taken at face value and must be un-

wrapped
• Based on relative distance geometry, so no alignment of frames is

required
• If 7 arguments are given, the program assumes that the last argu-

ment is csel
• You can specify your own coarse graining and masking functions

via the csel and msel parameters. The intended use of this func-
tionality is mainly to select a region of interest for the analysis. It
is recommended that the csel function picks one representative
atom per side chain in the region of interest, whereas the msel
function should sample the masking region at full atomic detail

gmdshow.py - rendering a 3D GMD graph

Purpose
Facilitates visualization of a GMD graph with the molecular graphics pro-
gram VMD

Usage
$ gmdshow.py infile order outfile [csel [msel]]

Input (3, 4, or 5 arguments)
• infile: PDB file used for GMD calculation
• order: GMD order > 1
• outfile: filename of VMD-sourcable Tcl script that will contain

graph connectivity
• [csel]: Optional user-provided coarse-graining function defined

in mod_pwk.py (default: mod_pwk_side)
• [msel]: If csel is defined, optional user-provided mask sampling

selection for GMD defined in mod_pwk.py (the default is
mod_pwk_all)

Caveats and Note
• PDB coordinates are taken at face value and must be unwrapped

• If 4 arguments are given, the program assumes the last argument is
csel

• You can specify your own coarse graining and masking functions
via the csel and msel parameters. The intended use of this func-
tionality is mainly to select a region of interest for the analysis. It is
recommended that the csel function picks one representative at-
om per side chain in the region of interest, whereas the msel func-
tion should sample the masking region at full atomic detail

pearson.py - Pearson correlation analysis of data columns

Purpose
Statistical correlation analysis of raw time series data in column format

Usage
$ pearson.py infile1 colnr1 infile2 colnr2

Input (4 arguments)
• infile1: White space delimited time series data in column format
• colnr1: Column number that will be analyzed (counting from 1)
• infile2: White space delimited time series data in column format
• colnr2: Column number that will be analyzed (counting from 1)

Output
• Mean and standard deviation for each input time series, correlation

coefficients

signals.py – predicting allosteric signaling networks

Purpose
Prediction and visualization of allosteric signaling networks in proteins.
Currently, the program supports two prediction modalities (based on pair-
wise residue distance geometry or based on the absolute Cartesian coordi-
nate covariance). For testing purposes, a third network based on the in-
verse mean distances is also exported. The pairwise residue distance
based approach is analogous to that described for pairwise residue interac-
tion energies by Kong & Karplus (Proteins 2009, 74:145).

Usage
$ signals.py infile1 infile2 outname [-lsq] \

 [excl [ccut [dcut [csel]]]]

Input (3-8 arguments)
• infile1: PDB file used for coarse model assignment
• infile2: Trajectory file, for supported formats see Section 2
• outname: User-defined basename prefix for output file names
• [-lsq]: Optional least-squares fitting of trajectory frames to the

input PDB (for Cartesian covariance analysis only)
The following optional parameters must be entered in order starting
from top (argument list can be truncated):
• [excl]: Neighbor contact exclusion in coarse (residue) model (de-

fault: 1; excludes undesired correlation contributions from neigh-
boring residues)

• [ccut]: Correlation cutoff (used only in distance geometry ap-
proach); allowable ccut range: [0 1]; absolute values <= ccut are
set to zero (default value: 0.0)

• [dcut]: Distance cutoff > 0.0 in Å; only residue contacts with
(mean-std.dev. ≤ dcut; statistics over time) will be considered (de-
fault: 'inf')

• [csel]: Optional user-provided coarse-graining function defined
in mod_pwk.py (default: mod_pwk_side)

Output
• outname_cgcor.dat: Data file with distance-geometry based contact

correlation matrix
• outname_cgcor.tcl: Corresponding VMD-sourceable (editable) Tcl

script with weighted graph connectivity in descending order
• outname_cgcov.dat: Data file with (absolute) covariance matrix
• outname_cgcov.tcl: Corresponding VMD-sourceable (editable) Tcl

script with weighted graph connectivity in descending order
• outname_cgcor.dat: Data file with (inverse, mean) distance matrix

(for testing purposes)
• outname_cgcor.tcl: Corresponding VMD-sourceable (editable) Tcl

script with weighted graph connectivity in descending order

Caveats and Notes
• Trajectory coordinates must be unwrapped
• Alignment of frames is required only for covariance analysis
• Some networks are very dense. The VMD-sourceable Tcl script

can be truncated (with an editor or the UNIX head command) to
limit the network to the most important interactions

tagging.py - mapping of functionally important residues

Purpose
Like its companion program turning.py, tagging.py performs a mapping of
functionally important residues whose fast, local dynamics correlates with
the slow, global dynamics. Here the analysis is based on pairwise residue
contact distances (similar to signals.py) whose absolute time differentials
are correlated with an external non-negative activity function (such as re-
turned by agility.py or terrain.py). Alternatively, the -raw option may be
specified for a direct correlation of plain pairwise residue contact distances
with an external order parameter. The correlation analysis can be project-
ed back to residue space, yielding a localization of functional hotspots on
side chains.

Usage
$ tagging.py infile1 infile2 infile3 outname [-mi] [-raw] \

[-norm] [colnr [excl [dcut [csel]]]]

Input (4-10 arguments)
• infile1: PDB file used for coarse model assignment
• infile2: Trajectory file, for supported formats see Section 2
• infile3: White space delimited time series data for ranking in

column format (typically the *segmentation.dat file returned by
agility.py or terrain.py, or an external order parameter for -raw)

• outname: User-defined basename prefix for output file names
• [-mi]: Option to turn on mutual information (fast information

matching with BADE [4]), otherwise Pearson cross correlation will
be used in the ranking (see [2] for details).

• [-raw]: Option to directly use raw time series for ranking (instead
of absolute time differentials)

• [-norm]: Option to normalize intermediate correlations to the
range [0,1] (useful for analyzing weak correlations)

The following optional parameters must be entered in order starting
from top (argument list can be truncated):
• [colnr]: Column number of infile3 that will be used for rank-

ing (default: 2; counting columns from 1)
• [excl]: Neighbor contact exclusion in coarse (residue) model (de-

fault: 0; may be used to exclude correlation contributions from
neighboring residues if desired)

• [dcut]: Distance cutoff > 0.0 in Å; only residue contacts with
(mean-std.dev. ≤ dcut; statistics over time) will be considered (de-
fault: 'inf')

• [csel]: Optional user-provided coarse-graining function defined
in mod_pwk.py (default: mod_pwk_side)

Output
• outname_log: Log file with parameters
• outname_pairwise.dat: Data file with coarse grained (residue-ID

based) pairwise Pearson correlation matrix
• outname_pairwise_resname.dat: Data file with 20x20 matrix of

correlations mapped to resname-resname space in cumulative fash-
ion. Resnames consistent with appendix C are assigned to row and
column indices in the order ARDNCQEGHILKMFPSTWYV

• outname_pairwise_resname_count.dat: Data file with correspond-
ing number of projections to each resname-resname bin

• outname_pairwise_resname_normalized.dat: Data file with nor-
malized resname-resname correlations (i.e. cumulative results di-
vided by count)

• outname_pairwise_resname_max.dat: Data file with maximum
resname-resname correlations (winner-take-all projection)

• outname_dump.dat: Data file with resname indices (0-19 corre-
sponding to the order ARDNCQEGHILKMFPSTWYV) and corre-
lation values that can be used for an external meta-analysis across
many trajectories

• outname_projected.dat: Data file with correlation values projected
to sequence

• outname_projected.pdb: PDB file with projected correlation values
in B-factor column (for visualization purposes)

Caveats and Notes
• Trajectory coordinates are taken at face value and must be un-

wrapped
• Based on distance geometry, so no alignment of frames is required

terrain.py - event detection and activity monitoring

Purpose
Performs a detailed event and activity analysis and in addition performs a
time-dependent segmentation of the total activity into “basins” and “tran-
sitions” for a temporal coarse-graining of the trajectory.

Usage
$ terrain.py infile1 infile2 cut1 cut2 \

 delta gtype outname [-full] [-lsq] [csel [msel]]

Input (7-11 arguments)
• infile1: PDB file used for coarse model assignment

• infile2: Trajectory file, for supported formats see Section 2
• cut1: Inclusive upper bound of contact. Values up to cut1 are

considered contacts in the recrossing filter. Recommended values
are 6.0-7.5 (Å) for Cutoff graphs, and 2 for GMD graphs

• cut2: Inclusive upper bound of crossing buffer. Values larger
than cut1 up to cut2 define the buffer zone in the recrossing fil-
ter. Recommended values are 7.0-8.5 (Å) for Cutoff graphs, and 3
for GMD graphs

• delta: Smoothing parameter in discrete trajectory timestep units
(window half width or Gaussian kernel FWHM); this parameter is
important as it sets the desired time scale of the filtering and activi-
ty analysis, and it is dependent on the problem. If you have no spe-
cific idea you can start with e.g. 5% of the total frame number and
adjust up or down as desired

• gtype: User-selected graph type, either GMD or Cutoff
• outname: User-defined basename prefix for output file names
• [-full]: Optional full output incl. graph and event trajectory files

(these can be large, so they must be requested explicitly)
• [-lsq]: Optional least-squares fitting of output trajectory frames

to the input PDB (if -full option is specified).
• [csel]: Optional user-provided coarse-graining function defined

in mod_pwk.py (the default is mod_pwk_side)
• [msel]: For GMD graphs only, if csel is defined, optional user-

provided mask sampling selection for GMD defined in
mod_pwk.py (the default is mod_pwk_all)

Output
• outname_graphs: Directory containing VMD-sourceable Tcl

scripts with graph connectivity for each frame (if -full option is
specified)

• outname_events.log: Log file of individual contact forming or
breaking events

• outname_events.dcd: DCD trajectory containing only event frames
(if -full option is specified)

• outname_activity.dat: Time series of total, forming, and breaking
activity

• outname_segmentation.dat: Data file with frame number, total ac-
tivity, first derivative, basin label (for plotting purposes or to pro-
vide an activity rate function for tagging.py and turning.py)

• outname_transitions.dcd: DCD trajectory file with frames of basin
transitions (if -full option is specified)

• outname_transitions.log: Corresponding log file with program pa-
rameters and frame information

• outname_minima.dcd: DCD trajectory file with frames of basin
minima (if -full option is specified)

• outname_minima.log: Corresponding log file with program param-
eters and frame information

Caveats and Notes
• End effects: There may be a surplus of breaking contacts at the end

of a trajectory due to the termination of the recrossing filter
• Trajectory coordinates are taken at face value and must be un-

wrapped
• You can specify your own coarse graining and masking functions

via the csel and msel parameters (csel must be set before msel
can be set). The intended use of this functionality is to select a re-
gion of interest for the analysis. It is recommended that the csel
function picks one representative atom per side chain in the region
of interest, whereas the msel function should sample the masking
region at full atomic detail

• Log files contain detailed output information even when the corre-
sponding trajectories are not explicitly written (in default mode)

• If the program runs slowly or runs out of memory try first to use
Cutoff graphs and / or try fewer frames

• It is also a good practice to fine tune parameters first on faster
Cutoff graphs before selecting the slower GMD

turning.py - mapping of functionally important residues

Purpose
Like its companion program tagging.py, turning.py performs a mapping of
functionally important residues whose fast, local turning motion (hinge-
bending) correlates with the slow, global dynamics. Here the analysis is
based on ‘pivot residue’ dihedral angles (four consecutive alpha carbon
dihedral: Yan et al., J. Protein Chem. 1999, 18:807) whose absolute time
differentials are correlated with an external non-negative activity function
(such as returned by agility.py or terrain.py). The correlation analysis can
be projected back to residue space, yielding a localization of functional
hotspots on the protein backbone.

Usage
$ turning.py infile1 infile2 infile3 outname [-mi] \

[-norm] [colnr]

Input (4-6 arguments)
• infile1: PDB file used for coarse model assignment
• infile2: Trajectory file, for supported formats see Section 2

• infile3: White space delimited time series data for ranking in
column format (typically the *segmentation.dat file returned by
agility.py or terrain.py)

• outname: User-defined basename prefix for output file names
• [-mi]: Option to turn on mutual information (fast information

matching with BADE [4]), otherwise Pearson cross correlation will
be used in the ranking (see [2] for details).

• [-norm]: Option to normalize intermediate correlations to the
range [0,1] (useful for analyzing weak correlations)

• [colnr]: Optional column number of infile3 that will be used
for ranking (default: 2; counting columns from 1)

Output
• outname_log: Log file with parameters and dihedral residue num-

bers
• outname_dihedrals.dat: Data file with pivot residue dihedral time

series
• outname_differentials.dat: Data file with correlation-based rank-

ings of pivot residues
• outname_turning.dat: Data file with correlation based rankings of

pivot residues projected to sequence
• outname_turning.pdb: PDB file with projected correlation values

in B-factor column (for visualization purposes)
• outname_pairwise_resname.dat: Data file with 20x20 matrix of

correlations mapped to resname-resname space in cumulative fash-
ion. Resnames consistent with appendix C are assigned to row and
column indices in the order ARDNCQEGHILKMFPSTWYV

• outname_pairwise_resname_count.dat: Data file with correspond-
ing number of projections to each resname-resname bin

• outname_pairwise_resname_normalized.dat: Data file with nor-
malized resname-resname correlations (i.e. cumulative results di-
vided by count)

• outname_pairwise_resname_max.dat: Data file with maximum
resname-resname correlations (winner-take-all projection)

• outname_dump.dat: Data file with resname indices (0-19 corre-
sponding to the order ARDNCQEGHILKMFPSTWYV) and corre-
lation values that can be used for an external meta-analysis across
many trajectories

Caveats and Notes
• Trajectory coordinates are taken at face value and must be un-

wrapped
• Based on relative distance geometry, so no alignment of frames is

required

• Due to the cyclic angle variables, the program does not support di-
rect correlation with an external order parameter as in tagging.py.

• No atom selection is supported, dihedrals are computed for all
(consecutive) alpha carbon quadruplets

4. Usage Ideas and Examples
The following brief tutorials provide usage ideas and workflow examples.

Evaluating contacts, events, and activities

Reference [1] provides the best reference for the original event detection
and activity monitoring applications. The activity curves are most useful
for plotting figures and as input for subsequent mapping of functional res-
idues (see below), whereas the event logs (see Supplementary Materials
and Methods of the paper) give detailed time-dependent information on
the significant contact changes in the structure. The workflow of this ap-
plication is as follows. The RMS deviations in Figures 1, 7, and 8 were
created with expanse.py. The 3D GMD graphs in Figure 3 were created
with gmdshow.py. The histograms in Figure 4 were created with
gmdhist.py. The contact time series in Figure 5 was extracted with con-
tact.py. The RMS fluctuations in Figures 7 and 8 were created with agili-
ty.py. The Cutoff and GMD activities in Figures 7, 8, and 9 were created
with terrain.py. The correlation values between the curves (discussed in
[1]) were computed with pearson.py.

Time-dependent segmentation (clustering)

The idea of segmenting the trajectory into basins and their constituent
minima and transitions was also described in the paper [1]. We found this
functionality to be useful in applications where a meaningful temporal
coarse-graining of the trajectory is required. For example, certain cluster-
ing algorithms require a full all-to-all comparison of frames. It makes
sense for such applications to reduce the computational complexity by
picking only meaningful frames, e.g. those corresponding to the basin
minima. Although this is not a true clustering in the sense that the tem-
poral sequence of the trajectory is retained in the ordering of the minima,
the saved minima could be used as seeds for a full clustering with a sepa-
rate program. TimeScapes supports such a “segmentation” of the trajecto-
ry in the tools agility.py (for Cartesian RMS fluctuations) and terrain.py
(Cutoff and GMD graphs). In both of these programs minima can be
saved (via the -full option) as DCD trajectory files.

Variable stride time compression

Compared to trajectories with fixed stride access pattern, the output DCD
trajectory *events.dcd (returned by terrain.py using the -full option) is
able to bridge between wider ranges of time scales: the system time is
compressed during times of inactivity, but it is stretched during times of
detected conformational changes. Variable stride movie animations will

appear more vibrant and active compared to those with a fixed stride, and
they emphasize particular changes a user may be interested in. For exam-
ple, in terrain.py (Cutoff and GMD graphs) a user may specify their own
coarse graining and masking functions via the csel and msel arguments
to focus on a region of interest. The events trajectory will then record
changes within this region only. Thereby, a user can visualize fast pro-
cesses in this region of interest against the background of overall slower
change in the global structure. Note that this trajectory may contain more
frames than the original trajectory due to duplication in the case of multi-
ple events per frame, so you may want to compress your dynamics suffi-
ciently by selecting a long smoothing parameter delta and/or a large re-
crossing buffer (the requirement to specify DCD output explicitly with the
-full option was introduced in version 1.3 to avoid filling up the disk
space accidentally).

Prediction of signaling networks and mapping of hot spots

As described above, the programs signals.py, tagging.py, and turning.py
perform the analysis of functionally relevant motion and its mapping onto
a network or the protein structure.
Detailed usage examples for heat map analysis using tagging.py and turn-
ing.py are provided in [2]. It has already been noted that these tools make
use of the activity rate functions (returned by agility.py or terrain.py) to
perform a heat mapping of residues relevant for the global activity. It
should be noted that the two programs are somewhat complementary.
While the turning analysis in turning.py mainly is focused on the protein
backbone, the distance geometry of tagging.py is focused on pairwise
side-chain interactions. We have used both programs routinely for the fol-
lowing tasks: (i) to inspect functional hotspots in (pairwise) residue ID
(sequence) space, (ii) to map the hotspots onto linear sequence (via B-
factor fields in the resulting PDB files), and (iii) to map the hot spots to
(pairwise) resname space. The last approach allows one to implement an
external meta-analysis across different protein systems, which we have
used e.g. in a stability analysis of MD force fields across a large trajectory
database.
The prediction of signaling networks with signals.py will be described in a
future publication. It should be noted that the simple editing of the Tcl
files returned by signals.py facilitates a basic “community analysis”. By
truncating the ordered list of graph edges, one can reveal only the strong-
est edges that typically yield one or two connected communities.

A. Version History:
A. TimeScapes 1.0 was based on the generictrajectory trajectory access

library and was used for the Figures and plots described in the paper [1].
Due to the reliance on parts of Desmond it was designed mainly for in-
house use at D. E. Shaw Research.

B. TimeScapes 1.1 was the first version based on the free molfile plugin li-
brary. It was designed to give results consistent with version 1.0 but it
was not optimized for memory use or efficiency. As an intermediate ver-
sion it was designed mainly for in-house use at D. E. Shaw Research.

C. TimeScapes 1.2, based on the molfile plugin library, was optimized for
memory and efficiency. Also, terrain.py was converted to distance geom-
etry to eliminate the need for trajectory frame alignment and to conform to
sequential processing of frames required by molfile. This means that
the median filter is applied after extracting the distance time series (in ver-
sions 1.0 and 1.1 that order of median filtering and distance calculation is
reversed). For these reasons, the output of terrain.py is similar, but not
identical, to that of versions 1.0 and 1.1.

D. TimeScapes 1.3 introduced three new programs, signals.py, tagging.py,
and turning.py (see above). The programs were augmented by several
new functions added to the respective mod_* support modules (see docu-
mentation in the source code): mod_twk_stat_cutoff, mod_twk_average,
mod_twk_covariance_flat, mod_twk_covariance, mod_pio_write,
mod_pio_write_weighted_bonds, and mod_pwk_lsq_fit_no_mass. A
VMD-sourceable macro was provided to facilitate rendering of coarse
grained models: representative_atoms_macro_source_me.vmd
(see Section 2). Some minor improvements were implemented in the ex-
isting programs: For example, the function mod_twk_kernel_estimator
(used by agility.py and terrain.py) now prints progress information, a new
–full option was added to agility.py and terrain.py to limit the output of
large data files (that may not be needed by every user) in the default mode,
and an option to align frames of the output trajectories was added to
terrain.py. Due to the move of main author Willy Wriggers in July 2014,
ownership was transferred from D. E. Shaw Research to Willy Wriggers,
affecting the license terms in appendix D with version 1.3.1.

E. TimeScapes 1.4 introduced the optional use of mutual information instead
of Pearson cross correlation in the tagging.py and turning.py tools [2].

F. TimeScapes 1.5 improved the mutual information calculation by introduc-
ing the BADE algorithm [4]. At the time of this writing the extension to
lipids and solvent molecules in [5] is not yet implemented, but will be re-
leased in a future version 1.5.1. Readers of [5] who require the functionali-
ty should inquire about a beta version by contacting
timescapes@biomachina.org .

mailto:timescapes@biomachina.org

B. References
[1] Willy Wriggers, Kate A. Stafford, Yibing Shan, Stefano Piana, Paul

Maragakis, Kresten Lindorff-Larsen, Patrick J. Miller, Justin Gullings-
rud, Charles A. Rendleman, Michael P. Eastwood, Ron O. Dror, and
David E. Shaw, “Automated Event Detection and Activity Monitoring
in Long Molecular Dynamics Simulations,” J. Chem. Theory Comput.,
2009, 5 (10), pp 2595–2605, DOI: 10.1021/ct900229u,
http://pubs.acs.org/doi/full/10.1021/ct900229u

 Supporting information:
 http://pubs.acs.org/doi/suppl/10.1021/ct900229u

[2] Julio Kovacs and Willy Wriggers, “Spatial Heat Maps from Fast In-

formation Matching of Fast and Slow Degrees of Freedom: Applica-
tion to Molecular Dynamics Simulations,” J. Phys. Chem. B., 2016,
120 (33), pp 8473–8484, DOI: 10.1021/acs.jpcb.6b02136,
http://pubsdc3.acs.org/doi/full/10.1021/acs.jpcb.6b02136
Supporting information:
http://pubsdc3.acs.org/doi/suppl/10.1021/acs.jpcb.6b02136

[3] Molfile Plugin Documentation, Theoretical and Computational Bio-

physics Group, University of Illinois at Urbana Champaign,
http://www.ks.uiuc.edu/Research/vmd/plugins/molfile/

[4] Julio Kovacs, Cailee Helmick, and Willy Wriggers, “A Balanced Ap-

proach to Adaptive Probability Density Estimation” Front. Mol. Bi-
osci., 2017, volume 4 (article 25) DOI: 10.3389/fmolb.2017.00025,
http://journal.frontiersin.org/article/10.3389/fmolb.2017.00025/full

[5] Willy Wriggers, Federica Castellani, Julio Kovacs and P. Thomas
Vernier, “Computing Spatiotemporal Heat Maps of Lipid Electropore
Formation: A Statistical Approach,” Front. Mol. Biosci., 2017, volume
4 (article 22) DOI: 10.3389/fmolb.2017.00022,
http://journal.frontiersin.org/article/10.3389/fmolb.2017.00022/full

http://pubs.acs.org/doi/full/10.1021/ct900229u
http://pubs.acs.org/doi/suppl/10.1021/ct900229u
http://pubsdc3.acs.org/doi/full/10.1021/acs.jpcb.6b02136
http://pubsdc3.acs.org/doi/suppl/10.1021/acs.jpcb.6b02136
http://www.ks.uiuc.edu/Research/vmd/plugins/molfile/
http://journal.frontiersin.org/article/10.3389/fmolb.2017.00025/full
http://journal.frontiersin.org/article/10.3389/fmolb.2017.00022/full

C. PDB residue names

PDB residue
name

comment representative
atom

ALA alanine CA
ARG arginine CZ
ARGN GROMACS deprotonated arginine CZ
ASP aspartate CG
ASPH GROMACS protonated aspartate CG
ASPP CHARMM protonated aspartate CG
ASH AMBER protonated aspartate CG
ASN asparagine CG
ASN1 GROMACS alternate asparagine CG
CYS cysteine CB
CYM AMBER protonated cysteine CB
CYSH GROMACS protonated cysteine CB
CYN AMBER cysteine not protonated CB
CYX AMBER disulfide bonded cysteine CB
CYS1 GROMACS cysteine CB
CYS2 GROMACS cysteine CB
GLN glutamine CD
GLU glutamate CD
GLH AMBER protonated glutamate CD
GLUH GROMACS protonated glutamate CD
GLUP CHARMM protonated glutamate CD
GLY glycine CA
HIS histidine CG
HIP AMBER doubly protonated histidine CG
HIE AMBER epsilon-2 protonated histidine CG
HID AMBER delta-1 protonated protonated histidine CG
HISH GROMACS doubly protonated histidine CG
HISB GROMACS epsilon-2 protonated histidine CG
HIS1 GROMACS epsilon-2 protonated histidine CG
HISA GROMACS delta-1 protonated histidine CG
HISP CHARMM doubly protonated histidine CG
HISE CHARMM epsilon-2 protonated histidine CG
HISD CHARMM delta-1 protonated histidine CG
HSC CHARMM doubly protonated histidine CG
HSP CHARMM doubly protonated histidine CG
HSE CHARMM epsilon-2 protonated histidine CG
HS2 CHARMM epsilon-2 protonated histidine CG
HSD CHARMM delta-1 protonated histidine CG
ILE isoleucine CG1

LEU leucine CG
LYS lysine CE
LYN AMBER lysine neutral (not protonated) CE
LSN CHARMM lysine neutral (not protonated) CE
LYP AMBER lysine protonated CE
LYSH GROMACS lysine protonated CE
MET methionine SD
PHE phenylalanine CG
PHEU GROMACS alternate phenylalanine CG
PRO proline CG
SER serine CB
THR threonine CB
TRP tryptophane CE2
TRPU GROMACS alternate tryptophane CE2
TYR tyrosine CG
TYRU GROMACS alternate tyrosine CG
VAL valine CB

D. Licenses

TimeScapes

TIMESCAPES LICENSE AGREEMENT

Copyright 2014-2016, Willy Wriggers Research Laboratory, biomachina.org. All rights reserved.

License Grant. Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the Software), to deal with the Software without
restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is fur-
nished to do so, subject to the following conditions:

Redistributions of source code must retain the above copyright notice, this list of conditions and
the following disclaimers.

Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimers in the documentation and/or other materials provided with the dis-
tribution.

Neither the names of Willy Wriggers, Biomachina.org, D. E. Shaw Research, nor the names of its
contributors may be used to endorse or promote products derived from this Software without spe-
cific prior written permission.

Acknowledgement and Citation. Licensee agrees to acknowledge the use of the Software in any
reports or publications of results obtained with the Software as

“TimeScapes Analytics Package, version 1.X, http://timescapes.biomachina.org, 2016”

where ‘X’ is to be replaced with the minor release number of the version used in the published
research. Licensee is also requested to include a citation to the following paper:

Julio Kovacs and Willy Wriggers, “Spatial Heat Maps from Fast Information Matching
of Fast and Slow Degrees of Freedom: Application to Molecular Dynamics Simulations,”
J. Phys. Chem. B., 2016, 120 (33), pp 8473–8484, DOI: 10.1021/acs.jpcb.6b02136,
http://pubsdc3.acs.org/doi/full/10.1021/acs.jpcb.6b02136

If the published research is based on results obtained with any Software Modification or any
complementary code, then those variants must be acknowledged as such.

Disclaimer of Warranties and Liabilities. THE SOFTWARE IS PROVIDED AS IS, WITHOUT
WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PUR-
POSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE CONTRIBUTORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABIL-
ITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING

http://pubsdc3.acs.org/doi/full/10.1021/acs.jpcb.6b02136

FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS WITH THE SOFTWARE.

Additional Licenses

Portions of the enclosed software are made available under separate terms specified by
the owners of that software.

Molfile

University of Illinois Open Source License
Copyright 2003 Theoretical and Computational Biophysics Group,
All rights reserved.

Developed by: Theoretical and Computational Biophysics Group
 University of Illinois at Urbana-Champaign
 http://www.ks.uiuc.edu/

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the Software), to deal with
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:

Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimers.

Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimers in the documentation and/or
other materials provided with the distribution.

Neither the names of Theoretical and Computational Biophysics Group, University
of Illinois at Urbana-Champaign, nor the names of its contributors may be used
to endorse or promote products derived from this Software without specific pri-
or written permission.

THE SOFTWARE IS PROVIDED AS IS, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IM-
PLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE CONTRIBU-
TORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS WITH THE SOFTWARE.

Other Software
Included in molfile are three files that claim additional copyright over that in the above
text:

ReadPARM7.h and ReadParm.h have the following notice:
 * COPYRIGHT 1992, REGENTS OF THE UNIVERSITY OF CALIFORNIA

hoomdplugin.c contains the following notice:
 * Copyright (c) 2009 Axel Kohlmeyer <akohlmey@cmm.chem.upenn.edu>

	TimeScapes
	Multi-scale analytics package for MD trajectories
	TimeScapes Version 1.5 / Document Version 0.6
	May 2017
	biomachina.org
	Notice
	Copyright
	Trademarks

	1. Overview
	2. Integration into the MD Workflow
	3. User Guide (alphabetically by program name)
	agility.py - sliding window RMS fluctuation and segmentation
	Purpose
	Usage
	Input (4 or 5 arguments)
	Output
	Caveats and Notes

	contact.py - extracting contact time series based on distance cutoff
	Purpose
	Usage
	Input (4 or 5 arguments)
	Output
	Caveat and Note

	expanse.py - computing the alpha carbon RMS deviation
	Purpose
	Usage
	Input (3 arguments)
	Caveat

	gmdhist.py - computing GMD pair distribution histograms
	Purpose
	Usage
	Input (6, 7, or 8 arguments)
	Output
	Caveats and Notes

	gmdshow.py - rendering a 3D GMD graph
	Purpose
	Usage
	Input (3, 4, or 5 arguments)
	Caveats and Note

	pearson.py - Pearson correlation analysis of data columns
	Purpose
	Usage
	Input (4 arguments)
	Output

	signals.py – predicting allosteric signaling networks
	Purpose
	Usage
	Input (3-8 arguments)
	Output
	Caveats and Notes

	tagging.py - mapping of functionally important residues
	Purpose
	Usage
	Input (4-10 arguments)
	Output
	Caveats and Notes

	terrain.py - event detection and activity monitoring
	Purpose
	Usage
	Input (7-11 arguments)
	Output
	Caveats and Notes

	turning.py - mapping of functionally important residues
	Purpose
	Usage
	Input (4-6 arguments)
	Output
	Caveats and Notes

	4. Usage Ideas and Examples
	Evaluating contacts, events, and activities
	Time-dependent segmentation (clustering)
	Variable stride time compression
	Prediction of signaling networks and mapping of hot spots

	A. Version History:
	B. References
	C. PDB residue names
	D. Licenses
	TimeScapes
	Additional Licenses
	Molfile
	Other Software

